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Abstract 

In this paper we present a theorem to determine characteristics of smooth map. For this 

purpose we studied some propositions and lemma related to smooth map on manifolds. 

The basic geometry of tangent space and definitions involving tangent bundle are 

discussed in our paper. We developed the notion of quotient manifold and sub manifold 

using the concept of smooth map. Finally, the theorem 6.1 on smooth map is generalized 

for finding the neighborhoods of surjective map.  
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1. Introduction 

A manifold is a topological space that locally resembles Euclidean space near each point. 

Although a manifold locally resembles Euclidean space, meaning that every point has a 

neighborhoods homeomorphism to an open subset of Euclidean space. The concept of a 

manifold is central to many parts of geometry and modern mathematical physics because 

it allows complicated structures to be described and understood in terms of the simpler 

local topological properties of Euclidean space. Manifolds naturally arise as a solution set 

of a system of equation and graphs of functions. Manifolds can be equipped with 

additional structure. One important class of manifolds is the class of differentiable 

manifolds. This differentiable manifolds structure allows calculus to be done on 

manifolds. The study of manifolds combines many important areas of mathematics. It 

generalizes concept such as curves and surfaces as well as ideas from linear algebra and 

topology. There were several important results of manifolds between 18
th
 and 19

th
 

century mathematics. The oldest of these was Non-Euclidean geometry, which considers 

spaces where Euclids parallel postulate fails. The Italian mathematician Saccheri (1733) 

                                                 
*
Corresponding author’s e-mail: shekmathdu@gmail.com 

mailto:shekmathdu@gmail.com


Barishal University Journal Part 1, 5(1&2): 47-58 (2018) A Study of smooth map on manifolds  

48 

first studied geometry and then Lobachevsky and Bolyai (1830) developed it. Their 

research uncovered two types of spaces whose geometric structures differ from that of 

classical Euclidean space. These are called hyperbolic geometry and elliptic geometry. In 

the modern theory of manifolds, these notions correspond to manifolds with constant, 

negative and positive curvature respectively. Gauss (1855) is the first to consider abstract 

spaces as mathematical objects in their own right. His theorem egregium gives a method 

for computing the curvature of a surface without considering the ambient space in which 

surface lies. Manifold theory has come to focus exclusively on these intrinsic properties 

while largely ignoring the extrinsic properties of the ambient space. Gauss (1805) and 

Monge (1807) first introduced differential geometry. The important contributions were 

made by many scientists in 19th century. Darboux and Bianchi (1896) collected and 

systematized the work. However, recently there are several researchers who worked on 

the development of several parts of manifolds. Ahmed et al., (2012) developed the 

characterization of vector fields on manifolds, Ali et al., (2012) worked on the exterior 

algebra with differential forms on manifolds. Ahmed et al., (2014) introduced the multi 

linear algebra and tensors with vector sub bundle on manifolds, Osman (2016) worked on 

basic integration on smooth manifolds and application map with Stokes theorem. In this 

paper we shall discuss the properties of tangent space, tangent bundle and developed the 

notion of quotient manifold and sub manifolds using the concept of smooth map. In this 

paper some necessary propositions related to smooth map are treated and the theorem 6.1 

has been derived.   

2. Tangent spaces 

Definition 2.1 (Flanders. 1963): For embedded sub manifolds 𝑀 ⊆ ℝ𝑛 , the tangent space  

𝑇𝑎 𝑀  at 𝑎 ∈ 𝑀 can be defined as the set of all velocity vectors 𝑣 = 𝛾 (0), where 

𝛾: 𝐽 → 𝑀 is a smooth curve with 𝛾 0 = 𝑎, here 𝑗 ⊆ ℝ is an open interval around 0. 

It turns out that 𝑇𝑎 𝑀  becomes a vector subspace of ℝ𝑛 . 

Example 2.1 (Flanders. 1963) Consider the sphere 𝑆𝑛 ⊆ ℝ𝑛+1, given as the set of 𝑥 such 

that ∥ 𝑥 ∥2= 1. A curve 𝛾 𝑡  lies in 𝑆𝑛  if and only if ∥ 𝛾 𝑡 ∥= 1. Taking the derivative 

of the equation 𝛾 𝑡 . 𝛾 𝑡 = 1 at 𝑡 = 0. We obtain after dividing by 2 and using 𝛾 0 =
𝑎, 𝑎𝛾  0 = 0. That is 𝑇𝑎 𝑀  consist of vectors 𝑣 ∈ ℝ𝑛+1 that are orthogonal to 𝑎 ∈

ℝ3{0}. It is easily seen that every such vector 𝑣 is of the form 𝛾 (0), hence that 𝑇𝑎
𝑆𝑛

=
(ℝ𝑝)⊥, hence the hyperplane orthogonal to the line through 𝑎. 

Definition 2.2 : Let 𝑀 be a manifold and 𝑎 ∈ 𝑀. The tangent space 𝑇𝑎 𝑀  is the set of 

all linear maps 𝑣: 𝐶∞(𝑀) → ℝ of the form  

                                                    𝑣 𝑓 =  
𝑑

𝑑𝑡
|𝑡=0 𝑓(𝛾 𝑡 )  
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For smooth curve 𝛾 ∈ 𝐶∞(𝐽, 𝑀) with 𝛾 0 = 𝑎. The elements 𝑣 ∈ 𝑇𝑎 𝑀  are called the 

tangent vectors to 𝑀 at 𝑎. 

The following local coordinate description makes it clear that 𝑇𝑎 𝑀  is linear subspace of 

the vector space 𝐿(𝐶∞ 𝑀 , ℝ) of linear maps 𝐶∞(𝑀) → ℝ. The dimension of linear 

maps equal to the dimension of 𝑀. 

Theorem 2.1 (Narasimhan. 1968) : Let (𝑈, 𝜑) be a coordinate chart around 𝑎. A linear 

map 𝑣: 𝐶∞(𝑀) → ℝ is in 𝑇𝑎 𝑀  if and only if it has the form 

𝑣 𝑓 =    𝑝𝑖 𝜕(𝑓𝑜𝜑−1)

𝜕𝑢 𝑖 |𝑢=𝜑(𝑎)
𝑚
𝑖=1                                   (2.1) 

for some 𝑝 = (𝑝1 , … , 𝑝𝑚 ) ∈ ℝ𝑛 . 

Proof. Given a linear map 𝑣 of this form. Let 𝛾  : ℝ → 𝜑(𝑈) be a curve with 𝛾   𝑡 =
𝜑 𝑎 + 𝑡𝑝 for |𝑡| sufficiently small. Let 𝛾 = 𝜑−1𝑜 𝛾  . Then 

                                                    
𝑑

𝑑𝑡
|𝑡=0 𝑓 𝛾 𝑡  =

𝑑

𝑑𝑡
|𝑡=0  𝑓𝑜𝜑−1 ( 𝜑 𝑎 + 𝑡𝑝) 

=   𝑝𝑖 𝜕(𝑓𝑜𝜑−1)

𝜕𝑢 𝑖 |𝑢=𝜑(𝑎)
𝑚
𝑖=1                     (2.2) 

by the chain rule. Conversely, given any curve 𝛾 with 𝛾 0 = 𝑎, let 𝛾  = 𝜑 𝑜 𝛾 be the 

corresponding curve in 𝜑(𝑈). Then 𝛾  = 𝜑(𝑎) and 

                                                          
𝑑

𝑑𝑡
|𝑡=0 𝑓 𝛾 𝑡  =

𝑑

𝑑𝑡
|𝑡=0  𝑓𝑜𝜑−1 (𝛾   𝑡  ) 

                                                      =   𝑝𝑖 𝜕(𝑓𝑜𝜑−1)

𝜕𝑢 𝑖 |𝑢=𝛾 𝑎 
𝑚
𝑖=1 ,                    (2.3) 

where 𝑎 =
𝑑𝛾   

𝑑𝑡
|𝑡=0. We can use this result as an alternative definition of the tangent 

space.                                                      

Definition 2.3 (Brickell et al., 1970) : Let 𝑀 be a smooth manifold, and let 𝒴(𝑀) be the 

ring of smooth functions on 𝑀. 

A tangent space of 𝑀 at a point 𝑎 ∈ 𝑀 is a linear map 𝜉: 𝒴(𝑀) → ℝ such that  

                                 𝜉 𝑓𝑔 = 𝜉 𝑓  𝑔 𝑎 + 𝑓 𝑎  𝜉 𝑔 ,      𝑓, 𝑔 ∈ 𝒴(𝑀). 

The tangent vectors form a real vector space, 𝑇𝑎(𝑀), under the linear operations 

  𝜆𝜉 + 𝜇𝜂  𝑓 = 𝜆𝜉 𝑓 + 𝜇𝜂 𝑓 ,     𝜆, 𝜇 ∈ ℝ,     𝜉, 𝜂 ∈  𝑇𝑎 𝑀 , 𝑓 ∈ 𝒴(𝑀)                  (2.4) 

𝑇𝑎(𝑀) is called the tangent space of 𝑀 at a. 
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3. Smooth functions on manifolds 

A real-valued function on an open subset 𝑀 ⊆ ℝ𝑛  is called smooth if it is infinitely 

differentiable. The notion of smooth functions on open subsets of Euclidean spaces 

carries over to manifolds. A function is smooth if its expression in local coordinates is 

smooth. 

Definition 3.1 (Brickell et al., 1970) : A function 𝑓: 𝑀 → ℝ on a manifold 𝑀 is called 

smooth if for all charts (𝑈, 𝜑) of the function  

𝑓𝑜𝜑−1: 𝜑(𝑈) → ℝ                                              (3.1) 

is smooth. The set of smooth functions on 𝑀 is denoted by  𝐶∞ 𝑀 . 

Example 3.1 The height function 𝑓: 𝑆2 → ℝ, (𝑥, 𝑦, 𝑧) → 𝑧 is smooth. In fact, we see that 

for any smooth function  ∈ 𝐶∞ ℝ3 , the restriction 𝑓 = |𝑆2  is again smooth. 

Lemma 3.1 (Olum. 1953) : Smooth functions 𝑓 ∈ 𝐶∞ 𝑀  are continuous. 

Proof. For every open subset  𝑗 ⊆ ℝ, the pre-image 𝑓−1(𝐽) ⊆ 𝑀 is open. We have to 

show that for every (𝑈, 𝜑), the set 𝜑(𝑈 ∩ 𝑓−1(𝐽)) ⊆ ℝ𝑛  is open. But this subset 

coincides with the pre-image of 𝐽 under the map 𝑓𝑜𝜑−1: 𝜑(𝑈) → ℝ, which is a smooth 

function on an open subset of ℝ𝑛  and these are continuous. 

4. The derivative of a smooth map 

Let 𝜑: 𝑀 → 𝑁 be a smooth map. Recall that 𝜑 induces a homomorphism 

                                                𝜑∗: 𝒴(𝑀) ← 𝒴(𝑁) 

given by  

 𝜑∗𝑓  𝑥 = 𝑓 𝜑 𝑥  ,    𝑓 ∈ 𝒴 𝑁 ,    𝑥 ∈ 𝑀.                                    (4.1)  

Lemma 4.1 (Narasimhan. 1968) : Let  𝜉 ∈  𝑇𝑎 𝑀 . Then 𝜉 ∘  𝜑∗ ∈ 𝑇𝜑(𝑎) 𝑁 , and the 

correspondence 𝜉 ⟼ 𝜉 ∘  𝜑∗ defines a linear map from 𝑇𝑎 𝑀  to 𝑇𝜑(𝑎) 𝑁 .  

Proof.  𝜉 ∘  𝜑∗ is a linear map from 𝒴(𝑁) to ℝ. Moreover,  

 𝜉 ∘  𝜑∗  𝑓𝑔 = 𝜉 𝜑∗𝑓. 𝜑∗𝑔  = 𝜉 𝜑∗𝑓 .𝑔 𝜑 𝑎  + 𝑓 𝜑 𝑎  . 𝜉(𝜑∗𝑔)                     (4.2) 

(𝑓, 𝑔 ∈ 𝒴 𝑁 ) and so 𝜉 ∘  𝜑∗ ∈ 𝑇𝜑(𝑎) 𝑁 . Clearly 𝜉 ⟼ 𝜉 ∘  𝜑∗ is linear. 

Definition 4.1 (Brickell et al., 1970) : Let 𝜑: 𝑀 → 𝑁 be a smooth map and let 𝑎 ∈ 𝑀. 

The linear map 𝑇𝑎 𝑀 → 𝑇𝜑(𝑎) 𝑁  defined by 𝜉 ⟼ 𝜉 ∘  𝜑∗ is called the derivative of 𝜑 

at 𝑎. It is denoted by (𝑑𝜑)𝑎 ,     𝑑𝜑 𝑎𝜉  𝑔 = 𝜉 𝜑∗𝑔 , 𝑔 ∈ 𝒴 𝑁 ,   𝜉 ∈  𝑇𝑎 𝑀 . 
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If 𝜓: 𝑁 → 𝑄 is a second smooth map, then  

                                         (𝑑(𝜓 ∘ 𝜑))𝑎 = (𝑑𝜓)𝜑(𝑎) ∘  𝑑𝜑 𝑎 , 𝑎 ∈ 𝑀. 

Moreover, for the identity map 𝜄: 𝑀 → 𝑀, we have 

                                                (𝑑𝜄)𝑎 = 𝜄𝑇𝑎  𝑀 , 𝑎 ∈ 𝑀 

In particular, if 𝜑: 𝑀 → 𝑁 is a diffeomorphism, then 

 𝑑𝜑 𝑎 : 𝑇𝑎 𝑀 → 𝑇𝜑(𝑎) 𝑁    and   (𝑑𝜑−1)𝜑(𝑎): 𝑇𝜑(𝑎) 𝑁 → 𝑇𝑎 𝑀               .             (4.3) 

 are inverse linear isomorphisms. 

Example 4.1 Let 𝜑: 𝑀 → 𝑁 be a smooth map which sends a neighbourhood 𝑈 of a point 

𝑎 ∈ 𝑀 diffeomorphically onto a neighbourhood 𝑉 of 𝜑(𝑎) in 𝑁. Then  

 𝑑𝜑 𝑎 : 𝑇𝑎 𝑀 → 𝑇𝜑(𝑎) 𝑁                                               (4.4) 

is a linear isomorphisms. 

5. Tangent bundle 

In this section we shall discuss  properties of smooth map using the concept of tangent 

bundle. Finally we state our theorem for determining the characteristics of subjective map 

using the definition of derivative of smooth map. We also give the definition of quotient 

manifold and sub manifolds by applying the definition of smooth map on manifold. 

Definition 5.1 (Brickell et al., 1970) : Let 𝑀 be a 𝑛-manifold. Consider the disjoint union   

𝑇𝑀 =  𝑇𝑎 𝑀 𝑎∈𝑀 , and let 𝜋𝑀 ∶  𝑇𝑀 → 𝑀 be the projection defined by 

  𝜋𝑀 𝜉 = 𝑎, 𝜉 ∈  𝑇𝑎 𝑀 . 

Then we define a manifold structure on 𝑇𝑀  so that  𝜏𝑀 = (𝑇𝑀 , 𝜋𝑀 ,𝑀, ℝ𝑛) is a vector 

bundle over 𝑀, whose fibre at a point 𝑎 ∈ 𝑀 is the tangent space 𝑇𝑎 𝑀 . Then 𝜏𝑀  is 

called the tangent bundle of 𝑀. 

Let (𝑈𝛼 , 𝑢𝛼 ,𝑈𝛼
 ) be a chart for 𝑀 and let 𝑗𝛼 : 𝑈𝛼 → 𝑀 be the inclusion map. For each 

𝑥 ∈ 𝑈𝛼  there  are linear isomorphisms 

                                           𝜆𝑢𝛼 (𝑥): ℝ𝑛
≅
→  𝑇𝑢𝛼  𝑥 (𝑈𝛼

 ) 

                                         (𝑑𝑢𝛼)𝑥
−1: 𝑇𝑢𝛼  𝑥  𝑈𝛼

  
≅
→  𝑇𝑥(𝑈𝛼)                                         (5.1) 

and  

                                        (𝑑𝑗𝛼)𝑥 : 𝑇𝑥 𝑈𝛼  
≅
→   𝑇𝑥(𝑀).                                                   (5.2) 
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Composing them we obtain a linear isomorphism 𝜓𝛼 ,𝑥 : ℝ𝑛
≅
→  𝑇𝑥(𝑀). 

Finally, let {(𝑈𝛼 ,𝑢𝛼)} be an atlas for 𝑀. Define maps  𝜓𝛼 : 𝑈𝛼 × ℝ → 𝑇𝑀  by 

                                           𝜓𝛼 𝑥,  = 𝜓𝛼 ,𝑥  , 𝑥 ∈ 𝑈𝛼 ,  ∈ ℝ𝑛 . 

If 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅ and 𝑢𝛽𝛼 = 𝑢𝛽  ∘  𝑢𝛼
−1, the map 

                             𝜓𝛽𝛼 = 𝜓𝛽
−1 ∘ 𝜓𝛼 : 𝑈𝛼 ∩ 𝑈𝛽 × ℝ𝑛 → 𝑈𝛼 ∩ 𝑈𝛽 × ℝ𝑛  

given by  𝜓𝛽𝛼  𝑥,  = (𝑥, 𝑢′
𝛽𝛼 (𝑢𝛼 𝑥 ; )). Hence it is smooth. 

According to the construction of vector bundles, there is a unique vector bundle 

 𝜏𝑀 = (𝑇𝑀 ,𝜋𝑀 ,𝑀, ℝ𝑛) for which {(𝑈𝛼 , 𝜓𝛼)} is a coordinate representation. The fibre of 

this bundle at 𝑥 ∈ 𝑀 is the tangent space 𝑇𝑥(𝑀).  

Evidently this bundle structure is independent of the choice of atlas for 𝑀. 

Example 5.1 If 𝑂 is an open subset of vector space 𝐸, then the tangent bundle 𝜏𝑂 is 

isomorphic to the product bundle 𝑂 × 𝐸. In fact, define a map 𝜆: 𝑂 × 𝐸 → 𝑇𝑂 by setting  

                                            𝜆 𝑎,  = 𝜆𝑎  ,   𝑎 ∈ 𝑂,  ∈ 𝐸, 

where 𝜆𝑎  is the canonical linear map. Then 𝜆 is a strong bundle isomorphism. 

Next, suppose 𝜑: 𝑀 → 𝑁 is a smooth map. Then a set map 𝑑𝜑: 𝑇𝑀 → 𝑇𝑀  is defined by 

                                           𝑑𝜑 𝜉 = (𝑑𝜑)𝑥𝜉, 𝜉 ∈  𝑇𝑥 𝑀 , 𝑥 ∈ 𝑀. 

It is called the derivative of  𝜑.  

Proposition 5.1 (Ali et al., 2012) : The derivative of a smooth map 𝜑: 𝑀 → 𝑁 is a bundle 

map 𝑑𝜑: 𝜏𝑀 → 𝜏𝑁 . 

Proof. It follows from the definition that 𝑑𝜑 is fibre preserving and that the restriction of 

𝑑𝜑 to each fibre is linear. To show that 𝑑𝜑 is smooth we use atlases on 𝑀 and 𝑁 to 

reduce the case 𝑀 = ℝ𝑛 ,𝑁 = ℝ𝑝 . In this case definition 2.5 shows that 

                                             𝑑𝜑: ℝ𝑛 × ℝ𝑛 → ℝ𝑝 × ℝ𝑝  

is given by 

                                         𝑑𝜑 𝑥;  = (𝜑 𝑥 ;  𝜑′(𝑥; )).                                              (5.3) 

Hence it is smooth. 

Now let 𝜓: 𝑁 → 𝑄 be a smooth map into a third manifold. Then 



Barishal University Journal Part 1, 5(1&2): 47-58 (2018) Ahmed et al. 

 

53 

                                                               𝑑 𝜓 ∘ 𝜑 = 𝑑𝜓 ∘ 𝑑𝜑 

as follows from the definition. Moreover, the derivative of the identity map 𝜄: 𝑀 → 𝑀 is 

the identity map of  𝑇𝑀 , 

                                                           𝑑𝜄𝑀 = 𝜄𝑇𝑀
.                                                           (5.4) 

It follows that if 𝜑: 𝑀 → 𝑁 and 𝜓: 𝑀 ← 𝑁 are inverse diffeomorphisms, then 𝑑𝜑 and 𝑑𝜓  

are inverse bundle isomorphisms. 

6. Properties of smooth maps on tangent bundle 

Let 𝜑: 𝑀 → 𝑁 be a smooth map. Then 𝜑 is called a local diffeomorphism (respectively 

an immersion, a submersion) at a point 𝑎 ∈ 𝑀 if the map 

                                                (𝑑𝜑)𝑎 : 𝑇𝑎 𝑀 → 𝑇𝜑(𝑎) 𝑁                                             (6.1) 

is a linear isomorphism (respectively injective, subjective). If 𝜑 is a local diffeomorphism 

(respectively an immersion, a submersion) for all points 𝑎 ∈ 𝑀, it is called a local 

diffeomorphism (respectively an immersion, a submersion ) of 𝑀 into 𝑁. 

Theorem 6.1 (Brickell et al., 1970) : Let 𝜑: 𝑀 → 𝑁 be a smooth map where dim 𝑀 = 𝑛 

and dim 𝑁 = 𝑟. Let 𝑎 ∈ 𝑀 be given a point. Then 

(a) If  𝜑 is a local diffeomorphism at 𝑎, there are neighbourhoods 𝑈 of 𝑎 and 𝑉 of 𝑏 such 

that 𝜑 maps 𝑈 diffeomorphically onto 𝑉. 

(b) If (𝑑𝜑)𝑎  is injective, there are neighbourhoods 𝑈 of 𝑎 and 𝑉 of 𝑏, and 𝑊 of 𝑂 in 

ℚ𝑛−𝑟 , and a diffeomorphism  𝜓: 𝑈 × 𝑊
≅
→ 𝑉  such that  𝜑 𝑥 = 𝜓 𝑥, 0 , 𝑥 ∈ 𝑈. 

(c) If (𝑑𝜑)𝑎  is surjective, there are neighbourhoods 𝑈 of 𝑎 and 𝑉 of 𝑏, and 𝑊 of 𝑂 in 

ℚ𝑛−𝑟 , and a diffeomorphism 𝜓: 𝑈
≅
→ 𝑉 × 𝑊 such that  𝜑 𝑥 = 𝜋𝑉𝜓 𝑥 , 𝑥 ∈ 𝑈, where 

𝜋𝑉 :𝑉 × 𝑊 → 𝑉 is the projection. 

Proof. By using charts we may reduce to the case 𝑀 = ℚ𝑛 , 𝑁 = ℚ𝑟  in part (a). Then, we 

are assuming that 𝜑′ 𝑎 : ℚ𝑛 → ℚ𝑛  is an isomorphism, and the conclusion in the inverse 

function theorem. 

For part (b), we choose a subspace 𝐸 of ℚ𝑟  such that 

                                                   Im 𝜑′ 𝑎 ⨁ 𝐸 = ℚ𝑟 .                                                    (6.2) 

and consider the map 𝜓: ℝ𝑛 × 𝐸 → ℝ𝑟  given by 

                                             𝜓 𝑥, 𝑦 = 𝜑 𝑥 + 𝑦, 𝑥 ∈ ℚ𝑛 , 𝑦 ∈ 𝐸. 
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Then  

                            𝜓′ 𝑎, 0; , 𝑘 = 𝜑′ 𝑎;  + 𝑘,  ∈ ℚ𝑛 , 𝑘 ∈ 𝐸                                (6.3) 

It follows that 𝜓′ 𝑎, 0  is injective and thus an isomorphism (𝑟 = dim Im𝜑′ 𝑎 +

dim𝐸 = 𝑛 + dim𝐸). 

Thus part (a) implies the existence of neighborhoods 𝑈 of 𝑎 and 𝑉 of 𝑏, and 𝑊 of 𝑂 in 𝐸 

such that 𝜓: 𝑈 × 𝑊 → 𝑉 is a diffeomorphism. Clearly, 𝜓 𝑥, 0 = 𝜑 𝑥 . 

Finally, for part (c), we choose a subspace 𝐸 of ℚ𝑟  such that ker 𝜑′ 𝑎 ⨁ 𝐸 = ℚ𝑛 . 

Let 𝜌: ℚ𝑛 → 𝐸 be the projection induced by this decomposition, and define  𝜓: ℚ𝑛 →

ℚ𝑟⨁ 𝐸 by 

    𝜓 𝑥 =  𝜑 𝑥 , 𝜌 𝑥  ,   𝑎 ∈ ℚ𝑛 ,  ∈ ℚ𝑛 .                                 (6.4) 

It follows easily that 𝜓′(𝑎) is a linear isomorphism. Hence there are neighbourhoods 𝑈 of 

𝑎 and 𝑉 of 𝑏, and 𝑊 of 0 ∈ 𝐸 such that 𝜓: 𝑈 → 𝑉 × 𝑊 is a diffeomorphism. 

Proposition 6.1 : If 𝜑: 𝑀 → 𝑁 be a smooth bijective map and if the maps 

(𝑑𝜑)𝑥 : 𝑇𝑥 𝑀 → 𝑇𝜑(𝑥) 𝑁  are all surjective, then 𝜑 is a diffeomorphism. 

Proof. Let dim 𝑀 = 𝑛 and dim 𝑁 = 𝑟. Since (𝑑𝜑)𝑥  is surjective, we have 𝑟 ≥ 𝑛. Now 

we show that 𝑟 = 𝑛. For every 𝑎 ∈ 𝑀 there exist a neighborhoods 𝑈 of 𝑎 and 𝑉 of 𝑏, and 

𝑊 of 0 ∈ ℝ𝑛−𝑟  together with a diffeomorphism  𝜓𝑎 : 𝑈 𝑎 × 𝑊
≅
→𝑉 such that the 

diagram 1 

                                       𝑈 𝑎 × 𝑊                𝜓𝑎                        𝑉 

 

                                                                     𝑖           𝜑 

                                                                     

                                                                          𝑈 𝑎  

Diagram 1: Composite map 

commutes (𝑖 denotes the inclusion map opposite 0)  

Choose a countable open covering 𝑈𝑖  (𝑖 = 1, . . , 𝑛) of 𝑀 such that each 𝑈𝑖
  is compact and 

contained in some 𝑈(𝑎𝑖). Since 𝜑 is surjective, it follows that 𝑈𝑖  𝜑( 𝑈𝑖
 ) ⊃ 𝑁. 
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Now assume that 𝑟 > 𝑛. Then the diagram implies that no 𝜑( 𝑈𝑖
 ) contains an open set. 

Thus, by the category theorem  𝑁 could not be Hausdorff. This contradiction shows that 

𝑛 = 𝑟.  

Since 𝑛 = 𝑟, 𝜑 is a local diffeomorphism. On the other hand, 𝜑 is bijective. Since it is a 

local diffeomorphism and its inverse is smooth. This implies that  𝜑 is a  diffeomorphism.        

7. Quotient manifold 

A quotient manifold of a manifold 𝑀 is a manifold 𝑁 together with a smooth map 

𝜋: 𝑀 → 𝑁 such that  𝜋 and each linear map (𝑑𝜋)𝑥 : 𝑇𝑥 𝑀 → 𝑇𝜋(𝑥) 𝑁  is surjective and  

thus dim 𝑀 ≥ dim 𝑁. 

Proposition 7.1 (Narasimhan. 1968) : Let 𝜋: 𝑀 → 𝑁 make 𝑁 into a quotient manifold of 

𝑀. Assume that 𝜑: 𝑀 → 𝑄, 𝜓: 𝑁 → 𝑄 are maps into a third manifold 𝑄 such that the 

diagram 2 

                                               𝑀                           𝜑                  𝑄 

 

 

                                                           𝜋                              𝜓 

 

                                                                           𝑁     

Diagram 2: Smooth map 

commutes. Then 𝜑 is smooth if and only if 𝜓 is smooth.       

8. Sub manifold 

Let 𝑀 be a manifold. An embedded manifold is a fair (𝑁, 𝜑), where 𝑁 is a second 

manifold and 𝜑: 𝑁 → 𝑀 is a smooth map such that the derivative  𝑑𝜑 = 𝑇𝑁 → 𝑇𝑀  is 

injective. In particular, since the maps (𝑑𝜑)𝑥 : 𝑇𝑥 𝑀 → 𝑇𝜑(𝑥) 𝑁  are injective, it follows 

that dim 𝑁 ≤ dim 𝑀. 

Given an embedded manifold (𝑁, 𝜑), consider the subset 𝑀1 = 𝜑(𝑁). 𝜑 may be 

considered as a bijective map 

                                                            𝜑1: 𝑁 → 𝑀1. 

This bisection defines a smooth structure on 𝑀1, such that 𝜑1 becomes a diffeomorphism. 
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Definition 8.1 (Narasimhan. 1968) : A submanifold of a manifold 𝑀 is an embedded 

manifold (𝑁, 𝜑) such that 𝜑1:𝑁 → 𝜑(𝑁) is a homomorphism, when 𝜑(𝑁) is given the 

topology induced by the topology of 𝑀. If 𝑁 is a subset of 𝑀 and 𝜑 is the inclusion map, 

we say simply that 𝑁 is a submanifold of 𝑀.  

Not every embedded manifold is a submanifold, as the following example shows: 

Let 𝑀 be the 2-torus 𝑇2 and let 𝑁 = ℝ. Define a map 𝜑: ℝ → 𝑇2 by 𝜑 𝑡 =

𝜋 𝑡, 𝜆𝑡 ,   𝑡 ∈ ℝ, 

where 𝜆 is an irrational number and 𝜋: ℝ2 → 𝑇2 denotes the projection. Then  

𝑑𝜑: 𝑇ℝ → 𝑇𝑇2  is injective and so (ℝ, 𝜑) is an embedded manifold. Since 𝜆 is an 

irrational, 𝜑(ℝ+) is dense in 𝑇2. In particular there are real numbers 𝑎𝑖 > 0 such that  

𝜑(𝑎𝑖) → 𝜑(−1). Thus 𝑇2 does not induce the standard topology in 𝜑(ℝ). 

Proposition 8.1 (Kobayashi et al., 1963) : Let (𝑁, 𝑖) be a submanifold of 𝑀. Assume that 

𝑄 is a smooth manifold and  

                                           𝑄                           𝜑                            𝑁 

 

                                                      𝜓                                         𝑖 

 

                                                                                      

                                                                            𝑀     

Diagram 3: Commutative map 

is a commutative map. Then 𝜑 is smooth if and only if  𝜓 is. 

Proof. If 𝜑 is smooth then clearly so is 𝜓 is. Conversely, assume that 𝜓 is smooth. Fix a 

point 𝑎 ∈ 𝑄 and set 𝑏 = 𝜓(𝑎). Since 𝑑𝑖 is injective, there are neighborhoods 𝑈, 𝑉 of 𝑏 in 

𝑁 and 𝑀, respectively, and there is a smooth map 𝜒: 𝑉 → 𝑈 such that 𝜒 ∘ 𝑖𝑈 = 𝜄. 

Since 𝑁 is a submanifold of 𝑀, the map 𝜑 is continuous. Hence there is neighborhood 𝑊 

of 𝑎 such that 𝜑(𝑊) ⊂ 𝑈. Then  𝑖𝑈 ∘ 𝜑𝑊 = 𝜓𝑊, where 𝜑𝑊 ,𝜓𝑊  denote the restrictions of 

𝜑, 𝜓 to 𝑊. It follows that   𝜒 ∘ 𝜓𝑊 = 𝜒 ∘ 𝑖𝑈 ∘ 𝜑𝑊 = 𝜑𝑊  and so 𝜑 is smooth in 𝑊; thus 𝜑 

is a smooth map. 
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9. Conclusion 

The main objective of this study is finding existence of the diffeomorphism smooth map 

on manifold. In order to achieve this result we described some propositions and related 

lemmas to illustrate the theorem. Our result discussed here on the basis of derivative of 

smooth map on manifolds. Finally we can say that the generalization of the theorem 6.1 

can be used in further study on tangent bundle of manifolds for finding the existence of 

diffeomorphism smooth map. 
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